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SUMMARY

A simplified approximate theory is presented by means of which
the laminar boundary layer over an insulated two-dimensional surface
may be calculated, a linear velocity profile being assumed, and an
estimate made of its effect in changing the pressure distribution over
the profile upon which the boundary layer is formed. Skin friction is
also determined. Comparisons of results from this’theory are made
with experimental results at
number of 980,a30.

a Mach number of 6.86 and a Reynolds

*

INTRODUCTION

At hypersonic speed the boundsry layers at a given Reynolds number
are thicker than those at lower sl?eedsbecause of the large temper-
ature gradients across the boundary layer. This thick boundary layer
effectively distorts the body contours and thereby causes deviations
from the pressure distributions predicted by theories which take no
account of viscous effects. In the present paper, only the laminar
boundary layer is considered and a theoretical method developed whereby
the surface pressure distribution over either a flat plate or a two-

9 dimensional curved surface in hypersonic flow can be obtained by taking
into account the effect of the boundary layer in distorting the theo-
retical nonviscous flow field. This simplified analysis Is based on
results obtained by Busemann (ref. 1) which indicated that the velocity
profile across the boundary layer formed on an insulated flat plate is
approximately linear at high Mach numbers.

After the work of Busemann, Von K&& and Tsien (ref. 2) obtained,
for a flat plate, both a solution in which a linear velocity profile
was assumed and a more exact solution in which the power law for
viscosity with an exponent of 0.76 was used where Busemann had utilized
a parabolic viscosity relationship. One of the more recent works, that

—
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of Van Driest (ref. 3) who used the method of Crocco (ref. 4) to obtain
even more exact results from a solution of the boundary-layer equations,
shows that the law used to determine the viscosity variation in the
boundary layer has but a small effect on the high Mach number linearity
of the velocity profile.

That part of the present analysis in which the flat plate or zero
pressure gradient is discussed is similar to the linear-velocity-
profile analysis made by Von K&n&n and Tsien but does not use ~
the power law for viscosity, which is generally inaccurate for the
range of temperature encountered at hypersonic speeds. This analy8is
is extended to approximate the case with pressure gradient. The case
of the insulated flat plate can be solved by ‘themore exact methods
(suchas that of Crocco) with little limitations to the law of
variation of the various parameters; however, these more exact solutions
are laborious compared with this approximate solution and the results
of the approximate solution, as will be shown, are, in general, close
ta the results obtained from more exact theories in predicting skin
friction and displacement thickness. In most cases, the results of
the more exact solutions (for example, refs. 4 and 5) are available
for only limited free-stream temperatures.*

An application of this simplified theoretical analysis is presented
and the results are compared with experimental surface-pressureresults
obtained from the Langley n-inch hypersonic tunnel for a flat plate
and a circular-arc profile set at various angles of attack to flow at
a Mach number of 6.86. Also, the results of skin-friction drag obtained
from the theory are compared with drag results obtained from models with
wedge and diamond profiles and square plan forms.

SYMEOLS

A,B constants in Sutherlandts viscosity formula
*

Cf average skin-friction drag coefficient for one side—
of a plate

CD drag coefficient

G slope of linear M(x) curve

.

-..— .—

—.
—

—

4

*During the process of publication of this paper, a paper by Lees
and Probstein (ref. 6) was published which treats the problem of the
displacing effect of the boundary layer in hypersonic flow in a more 4-

rigorous manner.
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total length along surface

Mach number at edge of boundary layer

Mach number in undisturbed stream

initial Mach number over surface under

exponent in power law for viscosity

consideration

static pressure over surface

static pressure in undisturbed

surface local static pressure

stagnation pressure at edge of

gas constant

stream

boundary layer

Reynolds nwnber based on free-stream conditions at
edge of boundary layer and chord length

absolute temperature

absolute

absolute

velocity

velocity

distance
point

distance

angle of

ratio of

temperature at edge of boundary layer

stagnation temperature

inside boundary layer and parallel to surface

at edge of boundary layer

along surface measured from forward stagnation

normal to surface

attack

specific heat at constant pressure to
specific heat at constant volume

total thickness of boundary layer

*
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5*

e

ea

displacement thickness of boundary layer

momentum thickness of boundary layer

initial value of momentum thickness over surface
under consideration

dynamic viscosity at edge of boundary layer

dynamic viscosity at wall

density inside bourdary layer

density at edge of boundsry layer

shearing stress at wall

,

THEORY —

Flow Without Pressure Gradient 4

If flow along an insulated flat plate with a Prandtl nuniberof .“
unity is assumed and if the laminar boundary layer that is being formed
along this plate has a linear velocity distribution normal to the plate,
then the parameters of the boundary layer, as well as a’good approxi-
mation to the flow field determined by the presence”of the boundary
layer, may be found in an uncomplicated form capable of rapid solution.

In reference 1, Busemann integrated the boundary layer for the
case of laminar flow at M = 8.8 along an insulated flat plate for a - _
Prandtl number of unity, constant specific heat, and a parabolic
viscosity relationship obtained from the kinetic theory. Busemann
found that the linear velocity profile closely approximated the exact
profile obtained from these assumed conditions; thus, indications are
that only small errors would result from the assumption of the linear
profile. Furthermore, in reference 7, Prandtl showed that, even in the
incompressible case where the boundary-layer velocity profile is more
curved than at large Mach numbers, the magnitude of the displacement
thickness is rather insensitive to the velocity profile chosen.

-.

Many investigators have shown that the effect of Prandtl number
on skin friction and velocity distribution in the boundary layer will
be small as long as the value of the Prandtl number is near unity.
Two of the more recent papers illustrating this point are references 3

. -J

and 4.
●
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Density variation through the boundary layer.-
of no heat conduction through the boundary layer or

With the assumption
confining wall and

with a Prandtl number of unity, the energy is constant across the
boundary layer. When the perfect gas law and the ordinary relation
between the speed of sound and temperature are applied and the static-
pressure variation through the boundary layer is assumed negligible,
the density and temperature variations through the boundary layer are

P T5 1
—=— =
Pb T

[ ()]

2
1+ 1- u k

F

(1)

7-1
where k ~ — M2 and M is the Mach number at the outer edge of

2
the boundary layer.

Displacement thickness.- The reduction of the mass flow in the
boundary layer has the effect of displacing the main stream from the
surface by an amount denoted by 5*.

By definition,

(2)

If the density variation of equation (1) is substituted into equa-
tion (2) and a linear velocity distribution is assumed, that is

u Y—=—
U5

then equation (2) upon integration becomes

5++=1 loge(l +-k)
(3)

b- 2k

In figure 1, equation (3) has been plotted for a range of Mach
number from O to 10. Of much interest and importance is the fact that
at hypersonic Mach numbers the displacement thickness is almost equal
to the total thickness of the boundary layer.
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Momentum thickness.- The momentum loss in the boundary layer can be
shown to be

J

b

J

5
u pudy- LMAy

0 0
(4)

By definition,

$=p++ (5)

where 9 is the momentum thickness of the boundary layer. With the
density variation of equation (1) and a
across the boundary layer, equation (5)
obtain

Equation (6), because of its form,

linear velocity variation
is readily integrated to

—

(loge (rk + & )1 (6)

requires a
accuracy in computation. A series solution of the

or

A

high degree of
Integrand gives

1+...(7)
(8)

Equation (8) converges very rapidly at Mach numbers below about
unity. Above, approximately,Mach number 3 the slow convergence of
equation (8) causes the use of equation (6) to be more satisfactory
from the standpoint of ease of computation where accurate tables are
available. Figure 2 presents values of e/5 as a function of Mach
number for a range of Mach number from O to 10. The value of the—
ratio of the displacement
a function of Mach number

Though the values of
range of Mach number from
in the range above a Mach

thickness to momentum thickness is given as
in figure 3.

5*/b, 9/5, and 5*/8 are presented for the
O to 10, they are primarily intended for use
number of approximately 4. .

,

..

—

.

.



NACA TN 2773 7

,
.

.

The values of 5*/5 and 6/5 cannot be satisfactorily compared
with results from the more exact theories because the velocity in the
boundary layer asymptotically approaches the free-stream velocity. The
values of E*/6, however, can be compared with those predicted by more
exact theories. For the incompressible case (M . O), the values pre-
dicted by the linear velocity profile are about 15 percent high with the
error diminishing as the Mach number increases.

Flow along a plane wall.- In-the case where the free-stream velocity
is independent of x (for example, flow along a flat plate in a gas of
infinite extent), the momentum equation of the boundary layer (see
ref. 8, vol. II, p. 613) is

t To .

where ‘o is the shear
and (9) produces

(9)

stress at the wall. Combining equations (~)

(lo)

For a laminar boundary layer with a linear velocity distribution,

.

To = Lo

()

au u
~ ~~ ‘ %

(11)

where Po is the dynamic viscosity at the wall. Thus, combining
equations (10) and (11) and integrating gives

(12)

—

Slope of the boundary-layer displacement-thickness curve.- Large
changes in the flow field can occur when changes occur in the boundaries.
Thus, the shape of the boundary layer and the angles it makes with the
plane wall are of importance, particularly at hypersonic speeds where
the boundary layer is extremely thick in comparison with the boundary
layer at subsonic speeds at equivalent Reynolds numbers. The effective
thickness of the boundary layer is considered to be the displacement

——-
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thickness and equation (12) becomes upon

NACA TN 2773

differentiation

(13)

Thus, the angle of the boundary-layer displacement surface with respect
to the flat plate can be determined at any point along the x-axis of
the plate.

Drag of a flat plate.- If equations (11) and (12) are combined and
integrated, and the definition of the mean skin-friction drag coeffi-
cient is used, then

( -.!#2.?#~cf =2.828: (14)

for the skin-friction drag coefficient of one side of a flat plate,
where P1 and Ml are the free-stream pressure and Mach number in

the undisturbed stream before the flat plate and P and M are the
pressure and Mach number in the free stream over the surface.

Equation (14) and those developed previously are not restricted
to the case of the flat plate where the Mach number over the plate is
the same as that in the free stream immediately before the plate;
rather, this analysis may be used for a plate inclined at an angle
with respect to the initial free stream as long as the flow is two-
dimensional,and remains laminar with no pressure gradient or separation
in t~e region under consideration.

A plot obtained from equation (14) is given in figure 4. At a
given initial Mach number, appreciable changes in the friction coef-
ficient occur as the angle of attack is varied since the variation
in the square root of the parameter p#/ILo will not cancel variations

in the remaining parameters, which are functions of Mach number only.
An angle-of-attack variation of approximately -l~” to 15° for one sur-
face of a plate 1s covered for each value of undisturbed-streamMach
number Ml in this plot.

The dashed line in figure 4, representing the case where the con-
ditions over the plate are the same as those in the undisturbed strean,
does not occur at zero angle of attack for, as shown by a consi.der~tion
of equation (13), the boundary layer prevetit.sthis. The zero angle of
a flat plate relative .tothe incident stream is thus in the region
above the line for M = Ml.

4

,
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. Substituting equation (A4) of the appendix, in
formula is used to define the relationship between

into equation (14) yields.

9

which Sutherland’s
P#J/VO ~d P#/P~~

where Re is the Reynolds number based on free-stresm conditions over

the plate. If the conditions over the plate are assumed to be the same
as those in the undisturbed stream and a value for Sutherland’s constant
is determined (see appendix), figure 5 is obtained.

In order to compare the results from equation (15) with results
froIuthe more exact theories, figure 6 has been prepared. The upper
three curves in this figure were obtained from reference 3 and the
lower curve was obtained from equation (15). The two curves labeled
Crocco-Van Driest were obtained by Van Driest (ref. 3) using Crocco’s

● method (ref. 4). The curve obtained by Von K<-’n and Tsien by use of
the power law for viscosity with an exponent of 0.76 was originally
presented in reference 2. Figure 6 shows, as was pointed out previously,

,
that variations in the Prandtl number have but a small effect on the
skin friction and indicates”the errors that can be incurred by using
the viscosity power law instead of the more accurate Sutherland’s
formula. The good accuracy at hypersonic Mach numbers of results
obtained by using the assumption of a linear velocity profile, as
compared with the results obtained by using the more exact theories,
is also shown in figure 6.

The results of an analysis by Klunker and McLean (ref. 5), which
is even more exact than the work of Crocco and Van Driestj have not
been included since these results would be abost coincident with the
Crocco-Van Driest curve for a Prandtl number of 0.75 through the Mach
number range 1 to 5 for which the calculations of reference 5 have
been made.

Flow With Pressure Gradient

At the lower supersonic Mach numbers; the boundary-layer profile
shape is relatively unaffected by the effects of pressure gradient as
indicated by the results of reference 9. In hypersonic wind-tunnel

. flow, relatively large ctinges in Mach number result in but small
changes in velocity because the maximum velocity obtainable is being
closely approached. The velocity distribution across the boundary “
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layer on an insulated plate in the presence of a negative pressure
.

gradient is thus assumed to be linear as was assumed for the case of
no gradient of pressure. As before, the Prandtl number is assumed to
be unity.

.

Momentum thickness of boundary layer.- For the case of steady flow
with a pressure gradient, the momentum equation of the boundary layer
can be written in the form

2-
5*

To de
M2+—

=—+e eig

P5U2 h M(l +k) dx
(16)

where U and M are, respectively the local velocitY and the ~cal
Mach number at the edge of the boundary layer. (For more details con-
cerning the development of eq. (16), see ref. 10, p. 22.)

The ratio
be represented
equation which

5*/8 for air where the velocity profile is linear may
with excellent accuracy by
represents the curve given

g= 0.68M2 +
9

the following
in figure 3:

3

approximate

(17)

Substituting equation (17) and the expression for the shearing stress
from equation (H) into equation (16) yields (with Y = l.~)

where

rP. RTo
N=F—

0 7’

Equation (18) is solvable as a“linear differential equation. With a
linear relationship between Mach number and distance along the surface
or

.

M=Gx+Ma

--

.

.
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the solution is

11

Similar assumptions as to velocity profile and Mach number distribu-
tion were made by Puckett in reference 10 in co~unction with a pipe
friction law for turbulent flow for an approximate determination of
the thickness of turbulent boundary layers in nozzles.

1
M

Values of Q- M9dM

0 5 (5 +@3”60
were obtained by a graphtcal inte-

gration and are given in table I and figure 7 for a range of Mach number
from O to 10; thus, the value of the integral in equation (19) between
any two limits in the range presented may be determined.

8* and e (eq. (17)After solving far .9,the relation between
J of fig. 3) will determine the value of 8*.

Slope of boundary-layer displacement-thickness curve.- The slope
of the boundary-layer displacement-thickness curve may be written as

d 5*
d6* 5* de F—= . — +e —
ti.edx dx

With equations (17) and (18), equation (20) becomes

F2%09E’~2;;;”g2- 11.36M

(20)

(21)

where the first term in equation (21) is the flat-plate solution.

Skin friction of a surface with pressure gradient.- If equations (16)

and (17) are used, the mean skin-friction drag coefficient of a surface
with a pressure gradient can be written as
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where, as before, PI and MI are
the undisturbed stream and P and
number in the stream at the edge of

NACA TN 2773

the pressure and Mach number in — .
M are the local pressure and Mach
the boundary layer.

.

~ utilizing equation (19) in a nondimensional form) eq~tion (22) _
was evaluated for MI = 4.00 and 6.86 (the Mach nuniberof the Langley
n-inch hypersonic tunnel) and VmiOUS values of.Ma~h n~ber immediately
following the shock at the leading edge of a curved plate Ma) the Mach
number variation from the leading edge of the airfoil to the trailing
edge being assumed linear. The results showed large increases in the
skin friction for a surface with a Mach number gradient compared with a
flat surface at zero inclination to the flow as illustrated in figure 8.

Method of Calculating Effect of Boundary Layer

on Surface Pressures

Flat plate.- In the presence of boundary layer, the Mach number
varies chordwise along a flat plate because of the varying slope of
the effective or displacement boundary-layer thickness (from eq. (13)).
The use of the actual Mach number variation along the plate was felt
to be an unnecessary complication; instead, the conditions where the
average angular slope of the boundary layer occurred (the quarter-chord
point) were chosen to represent the conditions over the entire plate
for the purpose of calculating a boundary-layer profile.

A boundary-layer displacement surface (5*(x)) is calculated by
using equation (12) and the calculations are based on the Mach number
obtained from the fnviscid theory. By adding the average angular slope

,f5*contour

Assumed surface to
obtain average
conditions

Surface

of the displacement thickness {f3 in the accompanying sketch) to the
angle which the plate surface makes relative to the initial free
stream (a) to obtain the average deflection angle of the flow (a’), .

the effective Mach number for computing a boundary layer for the next
approximation can be found. The process is repeated until the effec-
tive Mach number agrees with the calculated profile. In this analysis, .

the iteration process was done very readily by means of graphs of the
shock (expansion) equations and the boundary-layer displacement-
thickness slopes.



. The Mach number profile and, consequently, the pressure distr~bu-
tion is established by eqxmding the air downstream from the average
point over the boundary-layer displacement surface and isentropically

“ compressing the air in the upstream direction from this point. The
theory, of course, is based upon the absence of such a variation
in the free stream over the plate; thus, the results obtained are an
approximation to the actual occurrence. The closeness of the approxi-
mation will be determined by the shape of the boundary-layer displace-
ment surface involved.

Actually, if the Mach number determined from the inviscid theory
is used to calculate a displacement surface and the slope of t~s surface
at a given point is subtracted from the expansion angle for the inviscid-
theory Mach number, the surface pressures sre close to those obtained
from the previous iteration process. The ~thod of calculation by the
iteration process was preferred, however, since the physical processes
were more nearly duplicated. Also, the iteration procedure was not
much more tedious because graphs of the various functions were used,

As the leading edge is closely approached, the slope 01 the
boundary-layer displacement surface becomes large and the theory is

& invalid. The range of applicability of this method of calculating
the effect of the boundary lsyer is restricted to small angles of the ‘
displacement profile which in itself does not restrict the solution

. much more than the asswptions of the orders of magnitude inherent in
the boundsry-layer theory.

Circular-src smface.- With pressure gradient, a somewhat different
approach is required than for a flat plate. For the determination of
the flow about the circular-src profiles used in this investigation,
the assumption was first made that there was no loss in stagnation
pressure over that predictedby the oblique shock theory with inviscid
flow. Then, a two-step linear variation of Mach number with distance
along the surface was assumed (labeled “a” in accompanying sketch)

x
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which approximated
The boundary-layer

NACATN 2773

the curve obtained from the inviscid theory (b).
momentum thickness (eq. (19)) and the angular slope

of the boundary-layer displacement profile (eq. (21)) were determined
on the basis of this linear assumption. The theoretical expansion
around the geometric surface was decreased by the amount of the slope
of the boundary-layer displacement thickness to determine a new Mach
number distribution (c) and the boundary layer was recalculated by
using the linear approximation (d) to this curve. When, after succes.
sive approximations, the final iteration was closely in agreement with
the final assumed curve, the mean was taken between the result of the
final iteration and the Mach number variation assumed for its determina-
tion. This final Mach number variation then determined the pressure
distribution over the surface when the gain in entropy was assumed to
be that predicted-by the oblique-shock theory with inviscid flow.

ExHmMmr

.
Apparatus

Tunnel.- The tests were conducted in the Langley U-inch hyper-
sonic tunnel, which is a blowdown ty’peutilizing both a high-pressure
tank and a vacuum tank. The tunnel is described in references 11 and
12 and a calibration of the nozzle used for these tests is presented
in reference 12. The tests in this investigationwere made at an
average settling-chamberpressure of 25.5 atmospheres and an average
stagnation temperature of 730° F so that the Reynolds number was
about 980,000based on a k-inch length.

Models.- Flat-plate pressure data were obtained from a wedge-
shape profile and the flat side of a profile formed by a segment of
a circle. Pressure data with gradient were obtained from the circulsr-
arc surface of the segment profile. In plan form, all models were
4 inches square and had a thickness-to-chordratio of 0.05. A
photograph of one of the typical pressure models, that with the segment
profile for which pressures were taken on the circular-arc surface, is
shown in figure 9. These models had smooth iiachinedsurfaces with knife
leading edges. beading edges were mai.ntainedbetween 0.001 and
0.002 inch thick and the surfaces and edges were maintained in good
condition during the series of tests by periodic polishing. Orifices,
0.040 inch in diameter and located chordwise at the midsp~n station,
were formed by tubing which was flush with one surface and proJected
through the opposite surface. Additional data for the pressures on a
flat surface parallel to the flow were obtained from a 20° wedge-shape
model with a span of 3 inches. Pressures on one surface of this model
were obtained as close as 1/8 inch from the leading edge and no farther
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than 2$ inches

models was set

from the leading edge. The angle of attack of these

to within about 0.2°.

Two models with a k-inch-square plan form and a 5-yercent maximum
thickness were used to obtain total drag data. One of these models
had a wedge section and the other had a diamond section. These
models, which are shown in figure 10, were attached to the ~upport
sting, which housed the force balance, by means of a cone having an
included angle of 6.7° with a base of 0.5-inch diameter. The base for

the diamond-section model was l~inches downstream of the trailing edge

and 2~inches downstream of the trailing edge for the wedge-section

model. .

Pressure recording.- Pressures over the surfaces were measuredly
means of the aneroid-t~e, six-cell manometers described in reference 11.
In these instruments, the deflection of a diaphragm is converted into a
rotation of a small mirror which reflects a besm of light to a moving
film thereby giving a time history of the pressure. In these tests,
the air expanded to as much as 60 percent below the free-stream pres-
sure of about 0.2 inch of mercury. This lowest pressure canbe measured
with about 7 percent accuracy, whereas pressures of 1 inch of mercury
can be measured within about one-half of 1 percent accuracy. Eigh=o
pressures were measured within 1 to 2 percent accuracy.

Schlieren.- The schlieren photograph presented in figure 11 waE
taken by means of the schlieren system, described in reference 11,
which is of the highly sensitive double-traverse type. The photograph
was taken with a flash of a few micro-seconds duration.

Errors in total drag coefficients.- The errors in total drag coef-
ficients arise from errors in Mach number, stagnation pressure, and
angle-of-attack determination and from the force-balance sensitivity.
The calculated possible error that can,be attributed to the cumulative
effect of errors in these parameters is as follows:

0.005 to●0015
.010 *•00J-8
.015 t.0021
.020 i.0024

,

—-

A scatter of the data that is slightly higher than this calculated
error is sometimes encountered. This additional source of error is
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due to the uneven heating effect of the high-stagnation-temperatureair .

on the components of the balance.

The drag forces as measured for the two force models included the
.

force due to the conical support and the interference effects of the
support. corrections for the drag force on.the unshielded part of the.- -_
conical support were applied to the total drag results. These correc-
tions were based on calculated drag results for complete cones with
limited experimental checks. No attempt was made to determine the
effects of sting interference for the diamond-sectionmodel but these

,.

effects are believed to be small since the area affected by the shocks
from the support constitute
area.

COMPARISON

The boundary layer was
its appearance in schlieren

less than 5 percent of the model surface

OF THEORY WITH EXPERIMENT

determined to be laminar by
photographs. me extremely

examination of
high density

gradient in the outer part of the boundary layer with very little
&adfent near the wall-makes the laminar boundary layer readily dis- ;

#
tinguishable,from a turbulent boundary layer where the change in
gradient is less abrupt. Also, the manner in which the boundary layer
leaves the trailing edge of the airfoils is a good indication that it

.-

is laminar because very little diffusion or change in its appearance
occurs as it separates from the surface near the trailing edge. Further
corroboration is offered by the measured minimum drags which would be
expected to be almost twice as great were the boundary layer turbulent.

In order to determine whether the surface temperatures approach the
recovery temperatures closely enough so that the airfoils could be
effectively considered insulated plates, the diamond-shape airfoil was
tested with thermocouples imbedded flush with the airfoil surface.

The angle of attack was varied from O0 to 75°. Both the highest and

lowest skin temperatures were recorded at the highest angle of attack.

10 60 seconds after the start of the‘On the lower surface at a = 72

test, the skin temperature was 84 percent of the stream stagnation
temperature at the 7-percent-chord station, at midchord 71 percent, and
at the 94-percent-chord station 73 percent of the stagnation tempera-

ture. On the upper surface at a = 7~0 at the 7-percent-chord sta-”

tion, the skin temperattie was 80 percent of the stagnation temperature
and 65 percent of the stagnation temperattie at both midchord and the .

94-percent station. These skin temperatures-are considered sufficiently
high so that only small errors result when the airfoils are considered
as insulated plates.

.
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Flat:Plate Pressure Distribution

.

.

Figure l.1presents a comparison between pressure distributions
obtained from the theory (where the inviscid flow is corrected for
the displacing effect of the boundary layer) and experiments in the
Langley n-inch hypersonic tunnel with a flat surface set at vsrious
angles to the incident flow. The ratio used as a parameter in this

figure is a measure of the local pressure rise of the surface from the .

free-stream static pressure.

A very reasonable agreement between experiment and theory is seen at
0° angle of attack of the surface (fig. n(a)) and at small angles of
attack on the lower surface (fig. I.l(c)). The results shown in fig-
ure n(a) were presented by Becker in reference 13. Appreciable deviations
from the theory are seen even at small angles of attack for the upper sur-
face (fig. n(b)), and on the lower surface the deviations from the theory
become appreciable at an angle of incidence to the flow of about 80

Various methods have been attempted to explain the discrepancy
between the experimental pressures on the front part of the upper
surface and the pressures predicted by the boundary-layer displacement
effect. Condensation of air was ruled out since calculations, in which
the oxygen component of air was assumed to condense first, showed that
only at the angle of attack of 4° shown in figure n(b) was there a
possibility of even a small amount of condensation, and these calcula-
tions were made on the assumption that the full Jo-expansion could be
obtained.

Other calculations were made which applied the theory with pressure
gradient to the upper surface, but tms application of the theory with
pressure gradient changed the pressures predictedby the flat-plate
theory by an amount too small to explain the discrepancy.

The deviations from the theory of the results from the rear part
of the upper surface are attributed largely to a relieving effect about
the airfoil tips, to boundary-layer shock interaction, and to separa-
tion near the trailing edge. The pressure relieving would tend to
have a much larger effect on the surface undergoing a pressure drop
as compared with the opposite surface where a pressure rise is occurring.
On the lower surface, only at an angle of attack of about 19°do the
measured pressures start deviating from those predicted by the theory
with boundary layer. Near the leading edge, the theory would not be
expected to apply quantitativelybut would serve only to indicate
trends. The boundary layer at the leading edge can be modified by the
large pressure gradient, very neer the leading edge, due to the
boundary-layer growth and by the pressure gradient due to leading-edge
bluntness. Another modifying factor is due to the interaction of the

. leading-edge shock with the rapidly growing boundary layer. In addi-
tion, interaction between the various factors wouldbe expected.



The boundary layer is shown by the schlieren photograph inserted
in figure n(a). This boundary layer deflects the main flow away from
the surface so that a shock results at the leading edge followed by a
high pressure which decreases with distance from the leading edge as a
result of a gradual expansion after the shock. Without boundary layer,
the pressure rise should be zero. A curvature to the leading-edge shock
should be noted near the leading edge.

Pressure Distribution Over Circular-Arc Profile

Figure 12 presents a comparison of the pressure distributions
predicted by the inviscid theory, by the theory corrected for boundary
layer, and by the pressure distributions obtained experimentally at a
Mach number of 6.86at various angles of the chord of the segment
profile relative to the incident air flow.

As the angles of attack increase from O0 to 6°, fair to good
agreement generally exists between experiment and theory corrected for
boundary layer. An increasing extent of separation as the angle of
attack increases should be noticed near the trailing edge which, of
course, is not predicted by this theory.

At negative angles of a, experiment, in general, shows good
agreement with the corrected theory, though the pressures near the
leading edge are lower than those given by the theory with boundary
layer.

From these results, the boundary layer over a curved surface, such
as the one tested here, seems to cause an apparent thickening and
distortion of the actual surface contours. The result differs from
that for a flat plate for,’in this case, as the trailing edge is
approached, there is an acceleration in the growth of boundary layer
as the air flows from the relatively low Mach number region at the
leading edge to a considerably higher Mach number near the trailing
edge. This acceleration in the growth of the displacement surface of
the boundary layer as the rear of the curved surface is approached
occurs only at the higher local Mach numbers;
about 2,6, the gradient actually tends to thim
placement profile. (Refer to eq. (21).)

Drag Obtained From Theory and From

Below a Ma;finumber of
the boundary-layer dis-

Experiment

Figure 13 presents a comparison of the drag coefficients obtained
from the inviscid theory,

..
the inviscid theory with skin friction added, .

and the coefficients obtained from experimental data. The two-dimensional
oblique-shock and expansion relations, including a correction for tip .—
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effects from the linear theory, were used to obtain the inviscid-theory
drag. For the wedge-section airfoil, a base pressure of 50 percent of
free-stream pressure was used. This value was obtained from actual
pressure measurements on the base of a pressure model of this airfoil.
The method used for obtaining the skin-friction drag coefficient was
that outlined in the theoretical section of this paper in which the
flow conditions at the quarter-chord point were used to determine the
boundary layer as was done in determining the effect of the boundary
layer on the surface pressures.

The drag obtained from the inviscid theory was used for the form
drag instead of what should be thd more accurate form’drag obtained
from the pressures which have been corrected for displacement effect
because the displacement effect on the pressure drag was small in com-
parison with the friction drag.

The results obtained for both the models shown in figure 13 indi-
cate good agreement with the results obtained from the inviscid theory
with skin friction added. The curve of inviscid theory alone is much
lower than the experimental points; in fact, for the wedge airfoil the
total minimum drag is 3.6times the minimum drag value givenby the
inviscid theory, and the total mininunndrag for the diamond-section
wing is greater by a factor of about 3 at the test Reynolds number of

about 106. (For more complete results on the aerodynamic characteris-
tics of the diamond-profile square-plan-formmodel, see ref. 14.)
Thus, at this Mach number and Reynolds number, the skin friction is
evidently an important part of the drag of slender two-dimensional
profiles at low angles of attack.

Similsr results were albo obtained from a force model of the air-
foil with the circle-se~nt section. In this case also, good agree-
ment existed between the experimental drag results and the results
obtained from inviscid-theory drag plus skin friction in the ra~e of
angle of attack from -4°to 4°, with the theory predicting slightly
higher values of total drag than the experiment outside of this range
of angle of attack.

A comparison made between the average theoretical skin-friction
bag of the circular-arc surface with the chord &lined with the stream
and a flat plate alined with the stream indicates that the skin-
friction drag of the circular-arc surface is considerably higher for the
test conditions. The experimental data are not accurate enough to show
clearly this increase and, in general, for all the force models, are not
accurate enough to show clearly the presence of the temperature effects
indicated by figure 5. The data are useful, however, as a first-order
check on the magnitude of the skin-friction drag predicted by theory.
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. A simplified
pressible laminar
calculated and an

CONCLUDING REMARKS .

theory has been presented by means of which the com-
.

boundary layer over a two-dimensional surface may be
estimate made of its effe~t in distorting the flow

field about the profile upon which it is being formed. This analysis
is based on viscous flow with no heat transfer where the velocity dis-
tribution across the boundary layer is linear.

Comparison of pressures obtained from the boundary-layer theory
(zero pressure gradient) with experimental pressures from a flat plate
at a Mach number of 6.86has shown good agreement at zero angle of
attack and at low angles of attack of the high-pressure surface. The
low-pressure surface exhibits poor agreement with the theory even at
low angles of attack.

Comparisons have also been made between surface yressures measured
on a circular-arc profile and pressures predicted by the boundary-layer
theory with the effects of pressure gradient_included. Good agreement
between experiment and theory is found over-a wider range of angle of
attack than was found for a flat plate. .

The results at a Mach number of 6.86 for the drag coefficients of
two 5-percent-thick square-plan-formmodels showed good agreement
between theory with skin friction included and experiment. The values

-.

of the minimum total drag coefficients were at least three times the
minimum drag coefficient predicted by the inviscid theory; thus, the
skin-friction drag is evidently an important part of the low angle
drag at high Mach numbers and Reynolds numbers of about 106.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., May 26, 1952
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APPENDIX

TWO LAWS FOR TBE VARIATION OF VISCOSITY AND THEIR

EFFECT ON THE REYNOLDS NUMBER

The parsmeter PJJ/!Jo of equation (12)

Let the viscosity at the

.

wall be represented

To3/2
Po = A

TO+B

RELATIONS

may be expressed as

(Al)

by Sutherland’s formula

●

(A2)

where A and B are empirical constants depending on the gas. Sub-
8

stituting the value of W. from equation (A2) into equation (D) gives

(A3)

The wall viscosity and stagnation temperature may be replacedby
the viscosity and temperature in the free stre~; thus,

Pfju
—=
I-+-J ()*1 3/2 To + B

w~l+k To
+B

(A4)

l+k

(This equation, of course, has the disadvantage in wind-tunnel work
that, if the Mach number is high, the static temperature may be in
the extremely low temperature range where experimental data are not
available and have to be obtained from an extension of known data.)
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Equation (A4) shows that
simple functions of Mach

NACA TN 2~73

the boundary-layer thicknesses are not the
number and free-stream Reynolds number which

are obtained from the power”formula for viscosity where

pbu

(A5)

(A6)

.

,

Equation (A5), in general, is only adequate over a relatively
small range of temperature (though some few gases may be represented
with good or better accuracy by this equation than by the formula of
Sutherland); however, as the Mach number increases, the difference
between free-stream temperature and stagnation temperature becomes

.

large, and as the temperature range varies so does the power n for
air and many gases. For example, at a Mach.number of 7 and a free- .

stream temperature of -3000 F, the stagnation temperature is 1269o F - “
(when air is the medium), and for this large temperature difference
the power formula is unsatisfactory.

For air, values of A = 0.0220 x1O“-6 lb-sec/(oF)l/2-ft2 and
B = 177° F give errors of less than 1 percent in the range of tem-

perature from l~” to 750° F absolute and an error of only 2~percent

between 2000° and 3500° F absolute. These values hve been used in the
computation of the curves presented in figure 5; however, the values

‘6 lb-sec/(%)1/2-ft2 and B =S1980 F obtainedOf A = ().()291X 10
—

from reference 3 are somewhat better for temperatures above 2500 F
absolute. The magnitudes of these errors have been obtained from a
comparison with experimental data obtained from references 15 to 19.



NACA TN 2773 23

.

REFERENCES

1. Busemann, A.: Gasstrihnqg mit laminarer Grenzschicht entlang einer
Platte. Z.f.a.M.M., M. 15, Heft 1/2, Feb. 1935, PP. 23-25.

2. Von K&’n, Th., and Tsien, H. S.: Boundary Layer in Compressible
Fluids. Jour. Aero. Sci., vol. 5, no. 6, Apr. 1938, PP. 227-232o

3.Van Driest, E. R.: Investigation of Laminar Boundary Layer in
Compressible Fluids Using the Crocco Method. NACA TN 2597, 1952.

4. Crocco, Luigi: Lo Strato Limite Laminare nei Gas. (Laminar Boundary
Layer in Gases.) Monografie Scientifiche di Aeronautic, Nr. 3,
Oct. 1946.

5. Klunker, E. B., and McLeanj F. Edward: Lsminar Friction and Heat
Transfer at Mach Numbers ltrom1 to 10. NACA TN 2499, 1951.

6. Lees, Lester, andltPo%stein, Ronald F.: Hypersonic Viscous Flow Over
a Flat Plate. Rep. No. 195, Princeton Univ., Aero. Eng. Lab.,
Apr. 20, 1952.

7. Prandtl, L.: The Mechanics of Viscous Fluids. Vol. III of Aero-
dynamic Theory, div. G, W. F. Durand, cd., Julius Springer (Berlin),
1935, pP. 34-2o8.

8. Fluid Motion Panel of the Aeronautical Research Committee and Others:
Modern Developments in Fluid Dynamics. Vols. I and II, S. Goldstein,
cd., The Clarendon Press (Oxford), 1938.

9. Weil, H.: Effects of Pressure Gradient on Stability and Skin
Friction in Lsminar Boundary Layers in Compressible Fluids. Rep.
No. R49A0533, Gen. Elec. Co., Apr. 1950.

10. Puckett, Allen E.: Final Report on the Model Supersonic Wind-Tunnel
Project. Armor and Oral.Rep. No. A-269, OSRD No. 3569, Div. 2,
NDRC, 1944.

11. McLellan, Charles H., Willisms, Thomas W., and Bertram, Mitchel H.:
Investigation of a Two-Step Nozzle in the Langley n-Inch Hypers-
onic Tunnel. NACA.TN 2171, 1950.

12. McLellan, Charles H., Williams, Thomas W., and Beckwith, Ivan E.:
Investigation of the Flow Through a Single-Stage Two-Dimensional
Nozzle in the Langley n-Inch Hypersonic Tunnel. NACA TN 2223,
1950.



24 NACA TN 2773

13.Becker, John V.: Results of Recent Hypersonic and Unsteady Flow 4

Resesrch at the Im@ey Aeronautical Laboratory. Jour. Appl. PhYS.j
vol. 21, no. 7, July 1950, pp. 619-628. .

14. McLellan, Charles H.: Exploratory Wind-Tunnel Investigation of
Wings and Bodies at M = 6.9. Jour. Aero. Sci., vol. 18, no. 10,
Oct. 1951, PT. 641--648..

15.Hodgman, Charles D., cd.: Handbook of Chemistry and Physics.
Thirty-third cd., Chemical Rubber Publishing Co., 1951-1%2. .

16.Roth, Walther A., and Scheel~ Karl) eds.: Landolt-Bbrnstein
Physikalisch-ChemischeTabellen. Fifth cd., vol. 1. Julius
Springer (Berlin), 1923.

17. Fowle, Frederick E., cd.: Smithsonian Physical Tables. Eighth rev.
cd., Smithsonian Misc. Coil., vol. 88, 1933.

18.Johnston, Herrick L., and McCloskey, Kenneth E.: Viscosities of
Several Common Gases Between 90°K. and Room Temperature.

--
Jour.

Phys. C!hem.,vol. 44, no. 9, Dec. 1940, pp. 1038-1058. .

lg. Vasilesco, Virgile:, Recherches experime.ntalessw la viscosite’
des gaz aux temperatures ~lev~es. Chs. V-VIII, Ann. de Phys., .
vol. 20, ser. 11, May-June, 1945, pp. 292-334.



4C 25

.

4.

TABLE I

INTEGRAL TERM OF EQUATION (19)

J
9

‘e MdM
M

o~
()
~ + ~2 3“60

o 0
1.00 .000047
1.25 .000203
1.50 .000789
2.00 .006489

.06779
::: .2432
5.00 ● 5592
6.00

● 9957
1.525

i;: 2.118
9.00 2.760
10.00 3.440
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